Search results for "Shock capturing method"
showing 5 items of 5 documents
Shock capturing methods in 1D numerical relativity
2008
A numerical code is presented which uses modern shock capturing methods to evolve spherically symmetric perfect fluid space-times. Harmonic slicing is used to ensure singularity avoidance, which is crucial in strong field situations. Some tests are presented, including an application to the stellar collapse problem.
Power ENO methods: a fifth-order accurate Weighted Power ENO method
2004
In this paper we introduce a new class of ENO reconstruction procedures, the Power ENO methods, to design high-order accurate shock capturing methods for hyperbolic conservation laws, based on an extended class of limiters, improving the behavior near discontinuities with respect to the classical ENO methods. Power ENO methods are defined as a correction of classical ENO methods [J. Comput. Phys. 71 (1987) 231], by applying the new limiters on second-order differences or higher. The new class of limiters includes as a particular case the minmod limiter and the harmonic limiter used for the design of the PHM methods [see SIAM J. Sci. Comput. 15 (1994) 892]. The main features of these new ENO…
Computing Strong Shocks in Ultrarelativistic Flows: A Robust Alternative
1999
In recent years, shock capturing methods have started to be used in numerical simulations in Relativistic Fluid Dynamics (RFD). These techniques lead to explicit numerical codes that are able to successfully simulate the extreme conditions of the ultrarelativistic regime. After [2], an explicit, ready-to-use description of the full spectral decomposition of the Jacobian matrices of the RFD system is available, and this allows us to implement Marquina’s scheme [3] in RFD. The scheme is seen to maintain the good behavior shown in [3] with respect to certain numerical pathologies.
A Polynomial Approach to the Piecewise Hyperbolic Method
2003
In this paper, a local (third-order accurate) shock capturing method for hyperbolic conservation laws is presented. The method has been made with the same idea as the PHM method, but with a simpler reconstruction. A comparison with the classic high order methods is discussed.
Riemann solvers in relativistic astrophysics
1999
AbstractOur contribution reviews High Resolution Shock Capturing methods (HRSC) in the field of relativistic hydrodynamics with special emphasis on Riemann solvers. HRSC techniques achieve highly accurate numerical approximations (formally second order or better) in smooth regions of the flow, and capture the motion of unresolved steep gradients without creating spurious oscillations. One objective of our contribution is to show how these techniques have been extended to relativistic hydrodynamics, making it possible to explore some challenging astrophysical scenarios. We will review recent literature concerning the main properties of different special relativistic Riemann solvers, and disc…